Design of Active Clamp for Fast Transient Voltage Regulator-Down (VRD) Applications
نویسنده
چکیده
Since the early 80s, the computer industry has undergone great expansion. Processors are becoming faster and more powerful. Power management issues in computing systems are becoming more and more complex and challenging. An evolution began when the high-performance Pentium processor was driven by a non-standard, less-than-5V power supply, instead of drawing its power from the 5V plane on the system board. A so-called Voltage Regulator Module (VRM) is put close to the processor in order to provide the power as quickly as possible. Nowadays, for desktop and workstation applications, VRM input voltage has moved to the 12V output of the silver box. In the meantime, microprocessors will run at very low voltage (below 1V), will consume up to 100A of current, and will have dynamics of about 400A/us. In the near future, VRM will be replaced with VRD because of the parasitic components effect. The specifications requirements for VRD are even more challenging than VRM [1]. iii With this kind of tight tolerance, high current and fast current slew rate, transient response requirements for VRD design are very challenging, especially for step-down transient. During step-down transient, there is some additional energy stored in inductor. Traditional switching regulator like multi-phase buck can do nothing for this even by saturating the duty cycle to 0. All of the additional energy in inductor will be dumped into output cap and cause a large voltage spike at the output voltage. Even for step-up transient, traditional linear control like voltage loop control can't provide enough bandwidth because of the slow compensation and slow slew rate of the error amplifier. So the voltage drop is still quite large. Comparing with traditional linear controlled switching regulator such as voltage control and current control buck converter, active clamp has a lot of the advantages for the transient response. With proper design, active clamp can generate a very high bandwidth since there is no compensator needed in the control loop. Since active clamp bypasses inductor and is connected directly to the output cap, it can quickly source and sink current from the output cap even during the step-down transient and prevent overshooting of the output voltage. This is the biggest advantage for active clamp comparing with traditional linear control. In this thesis, a new active clamp structure is proposed. Several new concepts are proposed like non-linear Gm, built-in offset Gm, error signal feedback and AVP design. A one-channel buck …
منابع مشابه
An Active Clamp Circuit for Voltage Regulation Module (VRM) Applications
This paper discusses the design, fabrication, and test of a CMOS active clamp circuit. The active clamp is a linear voltage regulator, with a voltage deadband to allow for voltage ripple, that is designed to operate in parallel with a switchmode voltage regulator. Its specific function is to sink or source large transient currents to microprocessor loads, thus allowing operation with very small...
متن کاملA New ZVZCS Isolated Dual Series Resonant DC-DC Converter with EMC Considerations
A novel ZVZCS isolated dual series-resonant active-clamp dc–dc converter is proposed to obtain high efficiency. The proposed converter employs an active-clamp technique, while a series-resonant scheme controls the output voltage with the complementary pulse width modulation controller. The active-clamp circuit serves to recycle the energy stored in the leakage inductance or the magnetizing ...
متن کاملA Novel Dynamic Voltage Regulator with a Multi-level AC/AC Converter
This article proposed a novel topology of dynamic voltage regulator using transformer and PWM multi-level AC/AC converter. In this paper for finding the best value of duty ratio for switches to minimize the THD, the GA algorithm has been used and THD output voltage is assumed to be fitness function. The proposed voltage regulator employs multi-level AC/AC converter to generate compensation volt...
متن کاملDesign Considerations for VRM Transient Response Based on the Output Impedance
This paper discusses the transient response of voltage regulator modules (VRMs) based on the small-signal models. The concept of constant resistive output impedance design for the VRM is proposed, and its limitations in applications are analyzed. The impacts of the output filter and the feedback control bandwidth show that there is an optimal design that allows the VRM to achieve fast transient...
متن کاملA High Step-Down Interleaved Buck Converter with Active-Clamp Circuits for Wind Turbines
In this paper, a high step-down interleaved buck coupled-inductor converter (IBCC) with active-clamp circuits for wind energy conversion has been studied. In high step-down voltage applications, an IBCC can extend duty ratio and reduce voltage stresses on active switches. In order to reduce switching losses of active switches to improve conversion efficiency, a IBCC with soft-switching techniqu...
متن کامل